From the book cover, rear: INTERDISCIPLINARY APPLIED MATHEMATICS MATHEMATICAL BIOLOGY
This book evolved from an interdisciplinary graduate course entitled Molecular Modeling developed at New York University. Its primary goal is to stimulate excitement for molecular modeling research while pro- viding grounding in the discipline. Other scientists who wish to enter, or become familiar with, the field of biomolecular modeling and Simu- lation may also benefit from the broad coverage of problems and approaches. The book surveys three broad topics: (a) biomolecular structure and modeling—current problems and state of computations; (b) molecular mechanics—force field origin, composition, and evaluation tech- niques; and (c) simulation techniques—conformational sampling by geometry optimization, Monte Carlo, and molecular dynamics approaches. |
Contents: 1.1 A Multidisciplinary Enterprise 1.1.1 Consilience 1.1.2 What is Molecular Modeling 1.1.3 Need For Critical Assessment 1.1.4 Text Overview 1.2 Molecular Mechanics 1.2.1 Pioneers 1.2.2 Simulation Perspective 1.3 Experimental Progress 1.3.1 Protein Crystallography 1.3.2 DNA Structure 1.3.3 Crystallography 1.3.4 NMR Spectroscopy 1.4 Modern Era 1.4.1 Biotechnology 1.4.2 PCR and Beyond 1.5 Genome Sequencing 1.5.1 Sequencing Overview 1.5.2 Human Genome Chapter 1 References (Postscript) (PDF) 2 Biomolecular Structure and Modeling: Problem and Application Perspective 2.1 Computational Challenges 2.1.1 Bioinformatics 2.1.2 Structure From Sequence 2.2 Protein Folding 2.2.1 Folding Views 2.2.2 Folding Challenges 2.2.3 Folding Simulations 2.2.4 Chaperones 2.2.5 Unstructured Proteins 2.3 Protein Misfolding 2.3.1 Prions 2.3.2 Infectious Proteins? 2.3.3 Hypotheses 2.3.4 Other Misfolding Processes 2.3.5 Function From Structure 2.4 Practical Applications 2.4.1 Drug Design 2.4.2 AIDS Drugs 2.4.3 Other Drugs 2.4.4 A Long Way To Go 2.4.5 Better Genes 2.4.6 Designer Foods 2.4.7 Designer Materials 2.4.8 Cosmeceuticals 3 Protein Basic 3.1 The Machinery of Life 3.1.1 From Tissues to Hormones 3.1.2 Size and Function Variability 3.1.3 Chapter Overview 3.2 The Amino Acid Building Blocks 3.2.1 Basic C Unit 3.2.2 Essential and Nonessential Amino Acids 3.2.3 Linking Amino Acids 3.2.4 The Amino Acid Repertoire 3.3 Sequence Variations in Proteins 3.3.1 Globular Proteins 3.3.2 Membrane and Fibrous Proteins 3.3.3 Emerging Patterns from Genome Databases 3.3.4 Sequence Similarity 3.4 Protein Conformation Framework 3.4.1 The Flexible phi and psi and Rigid omega Dihedral Angles 3.4.2 Rotameric Structures 3.4.3 Ramachandran Plots 3.4.4 Conformational Hierarchy 4 Protein Hierarchy 4.1 Structure Hierarchy 4.2 Helices: A Common Secondary Structural Element 4.2.1 Classic - Helix 4.2.2 310 and Helices 4.2.3 Left - Handed - Helix 4.2.4 Collagen Helix 4.3 - Sheets: A Common Secondary Structural Element 4.4 Turns and Loops 4.5 Formation of Supersecondary and Tertiary Structure 4.5.1 Complex 3D Networks 4.5.2 Classes in Protein Architecture 4.5.3 Classes are Further Divided into Folds 4.6 - Class Folds 4.6.1 Bundles 4.6.2 Folded Leafs 4.6.3 Hairpin Arrays 4.7 - Class Folds 4.7.1 Anti - Parallel Domains 4.7.2 Parallel and Antiparallel Combinations 4.8 / and + - Class Folds 4.8.1 / Barrels 4.8.2 Open Twisted / Folds 4.8.3 Leucine-Rich / Folds 4.8.4 + Folds 4.9 Number of Folds 4.9.1 Finite Number? 4.9.2 Concerted Target Selection: Structural Genomics 4.10 Quaternary Structure 4.10.1 Viruses 4.10.2 From Ribosomes to Dynamic Networks 4.11 Structure Classification 5 Nucleic Acids Structure 5.1 DNA, Life's Blueprint 5.1.1 The Kindled Field of Molecular Biology 5.1.2 DNA Processes 5.1.3 Challenges in Nucleic Acid Structure 5.1.4 Chapter Overview 5.2 The Basic Building Blocks of Nucleic Acids 5.2.1 Nitrogenous Bases 5.2.2 Hydrogen Bonds 5.2.3 Nucleotides 5.2.4 Polynucleotides 5.2.5 Stabilizing Polynucleotide Interactions 5.2.6 Chain Notation 5.2.7 Atomic Labeling 5.2.8 Torsion Angle Labeling 5.3 Nucleic Acid Conformational Flexibility 5.3.1 The Furanose Ring 5.3.2 Backbone Torsional Flexibility 5.3.3 The Glycosyl Rotation 5.3.4 Sugar/Glycosyl Combinations 5.3.5 Basic Helical Descriptors 5.3.6 Base - Pair Parameters 5.4 Canonical DNA Forms 5.4.1 B-DNA 5.4.2 A-DNA 5.4.3 Z-DNA 5.4.4 Comparative Features 6 Topics in Nucleic Acids Structure 6.1 Introduction 6.2 DNA Sequence Effects 6.2.1 Local Deformations 6.2.2 Orientation Preferences in Dinucleotide Steps 6.2.3 Intrinsic DNA Bending in A-Tracts 6.2.4 Sequence Deformability Analysis Continues 6.3 DNA Hydration and Ion Interactions 6.3.1 Resolution Difficulties 6.3.2 Basic Patterns 6.4 DNA/Protein Interactions Supplement to section 6.4 (Postscript) (PDF) 6.5 Variations on a Theme 6.5.1 Hydrogen Bonding Patterns in Polynucleotides 6.5.2 Hybrid Helical/Nonhelical Forms 6.5.3 Overstretched and Understretched DNA 6.6 RNA Structure 6.6.1 RNA Chains Fold Upon Themselves 6.6.2 RNA's Diversity 6.6.3 RNA at Atomic Resolution 6.6.4 Emerging Themes in RNA Structure and Folding 6.7 Cellular Organization of DNA 6.7.1 Compaction of Genomic DNA 6.7.2 Coiling of the DNA Helix Itself 6.7.3 Chromosomal Packaging of Coiled DNA 6.8 Mathematical Characterization of DNA Supercoiling 6.8.1 DNA Topology and Geometry 6.9 Computational Treatments of DNA Supercoiling 6.9.1 DNA as a Flexible Polymer 6.9.2 Elasticity Theory Framework 6.9.3 Simulations of DNA Supercoiling 7 Theoretical Approaches 7.1 The Merging of Theory and Experiment 7.1.1 Exciting Times for Computationalists! 7.1.2 The Future of Biocomputations 7.1.3 Chapter Overview 7.2 QM Foundations 7.2.1 The Schrodinger Wave Equation 7.2.2 The Born-Oppenheimer Approximation 7.2.3 Ab Initio 7.2.4 Semi-Empirical QM 7.2.5 Recent Advances in Quantum Mechanics 7.2.6 From Quantum to Molecular Mechanics 7.3 Molecular Mechanics Principles 7.3.1 The Thermodynamic Hypothesis 7.3.2 Additivity 7.3.3 Transferability 7.4 Molecular Mechanics Formulation 7.4.1 Configuration Space 7.4.2 Functional Form 7.4.3 Some Current Limitations 8 Force Fields 8.1 Formulation of the Model and Energy 8.2 Normal Modes 8.2.1 Characteristic Motions 8.2.2 Spectra of Biomolecules 8.2.3 Spectra As Force Constant Sources 8.2.4 In-Plane and Out-of-Plane Bending 8.3 Bond Length Potentials 8.3.1 Harmonic Term 8.3.2 Morse Term 8.3.3 Cubic and Quartic Term 8.4 Bond Angle Potentials 8.4.1 Harmonic and Trigonometric Terms 8.4.2 Cross Bond Stretch / Angle Bend Terms 8.5 Torsional Potentials 8.5.1 Origin of Rotational Barriers 8.5.2 Fourier Terms 8.5.3 Torsional Parameter Assignment 8.5.4 Improper Torsion 8.5.5 Cross Dihedral/Bond Angle and Improper/Improper Dihedral Terms 8.6 The van der Waals Potential 8.6.1 Rapidly Decaying Potential 8.6.2 Parameter Fitting From Experiment 8.6.3 Two Parameter Calculation Protocols 8.7 The Coulombic Potential 8.7.1 Coulomb's Law: Slowly Decaying Potential 8.7.2 Dielectric Function 8.7.3 Partial Charges 8.8 Parameterization 8.8.1 A Package Deal 8.8.2 Force Field Performance 9 Nonbonded Computations 9.1 A Computational Bottleneck 9.2 Approaches for Reducing Computational Cost 9.2.1 Simple Cutoff Schemes 9.2.2 Ewald and Multipole Schemes 9.3 Spherical Cutoff Techniques 9.3.1 Technique Categories 9.3.2 Guidelines for Cutoff Functions 9.3.3 General Cutoff Formulations 9.3.4 Potential Switch 9.3.5 Force Switch 9.3.6 Shift Functions 9.4 The Ewald Method 9.4.1 Periodic Boundary Conditions 9.4.2 Ewald Sum and Crystallography 9.4.3 Morphing a Conditionally Convergent Sum 9.4.4 Finite-Dielectric Correction 9.4.5 Ewald Sum Complexity 9.4.6 Resulting Ewald Summation 9.4.7 Practical Implementation 9.5 The Multipole Method 9.5.1 Basic Hierarchical Strategy 9.5.2 Historical Perspective 9.5.3 Expansion in Spherical Coordinates 9.5.4 Biomolecular Implementations 9.5.5 New Variants 9.6 Continuum Solvation 9.6.1 Need for Simplification! 9.6.2 Potential of Mean Force 9.6.3 Stochastic Dynamics 9.6.4 Continuum Electrostatics 10 Multivariate Minimization 10.1 Optimization Applications 10.1.1 Algorithmic Understanding Needed 10.1.2 Chapter Overview 10.2 Fundamentals 10.2.1 Problem Formulation 10.2.2 Independent Variables 10.2.3 Function Characteristics 10.2.4 Local and Global Minima 10.2.5 Derivatives 10.2.6 Hessian Matrix 10.3 Basic Algorithms 10.3.1 Greedy Descent 10.3.2 Line Searches 10.3.3 Trust Region Methods 10.3.4 Convergence Criteria 10.4 Newton's Method 10.4.1 Newton in One Dimension 10.4.2 Newton's Method for Minimization 10.4.3 Multivariate Newton 10.5 Large-Scale methods 10.5.1 Quasi-Newton (QN) 10.5.2 Conjugate Gradient (CG) 10.5.3 Truncated-Newton (TN) 10.5.4 Simple Example 10.6 Software 10.6.1 Popular Newton and CG 10.6.2 CHARMM's ABNR 10.6.3 CHARMM's TN 10.6.4 Comparative Performance on Molecular Systems 10.7 Recommendations 10.8 Future Outlook 11 Monte Carlo Techniques 11.1 Monte Carlo Popularity 11.1.1 A Winning Combination 11.1.2 From Needles to Bombs 11.1.3 Chapter Overview 11.1.4 Importance of Error Bars 11.2 Random Number Generators 11.2.1 What is Random? 11.2.2 Properties of Generators? 11.2.3 Linear Congruential Generators 11.2.4 Other Generators 11.2.5 Artifacts Generators 11.2.6 Recommendations 11.3 Gaussian Random Variates 11.3.1 Manipulation of Uniform Random Variables 11.3.2 Normal Variates in Molecular Simulations 11.3.3 Odeh and Evans Method 11.3.4 Box/Muller Method 11.4 Means for Monte Carlo Sampling 11.4.1 Expected Values 11.4.2 Error Bars 11.4.3 Batch Means 11.5 Monte Carlo Sampling 11.5.1 Probability Density Function 11.5.2 Equilibrium or Dynamics 11.5.3 Ensembles 11.5.4 Importance Sampling 11.6 Hybrid MC 11.6.1 MC and MD 11.6.2 Basic Idea 11.6.3 Variants and Other Hybrid Approaches 12 Molecular Dynamics: Basics (Postscript) (PDF) 12.1 Introduction 12.1.1 Why Molecular Dynamics? 12.1.2 Background 12.1.3 MD Chapters Outline 12.2 Laplace's Vision of Newtonian Mechanics 12.2.1 The Dream 12.2.2 Deterministic Mechanics 12.2.3 Neglect of Electronic Motion 12.2.4 Deterministic Mechanics 12.2.5 Neglect of Electronic Motion 12.3 Basics 12.3.1 Following Motion 12.3.2 Trajectory Quality 12.3.3 System Setting 12.3.4 Trajectory Sensitivity 12.3.5 Simulation Protocol 12.3.6 High-Speed Implementations 12.3.7 Analysis and Visualization 12.3.8 Reliable Numerical Integration 12.3.9 Computational Complexity 12.4 The Verlet Algorithm 12.4.1 Position and Velocity Propagation 12.4.2 Leapfrog, Velocity Verlet, and Position Verlet 12.5 Constrained Dynamics 12.6 Various MD Ensembles 12.6.1 Ensemble Types 12.6.2 Simple Algorithms 12.6.3 Extended System Methods Chapter 12 References (Postscript) (PDF) 13 Molecular Dynamics: Further Topics 13.1 Introduction 13.2 Symplectic Integrators 13.2.1 Symplectic Transformation 13.2.2 Harmonic Oscillator Example 13.2.3 Linear Stability 13.2.4 Timestep-Dependent Rotation in Phase Space 13.2.5 Resonance Condition for Periodic Motion 13.2.6 Resonance Artifacts 13.3 Multiple-Timestep (MTS) Methods 13.3.1 Basic Idea 13.3.2 Extrapolation 13.3.3 Impulses 13.3.4 Resonances in Impulse Splitting 13.3.5 Resonance Artifacts in MTS 13.3.6 Resonance Consequences 13.4 Langevin Dynamics 13.4.1 Uses 13.4.2 Heat Bath 13.4.3 Effect of 13.4.4 Generalized Verlet for Langevin Dynamics 13.4.5 LN Method 13.5 Brownian Dynamics (BD) 13.5.1 Brownian Motion 13.5.2 Brownian Framework 13.5.3 General Propagation Framework 13.5.4 Hydrodynamics 13.5.5 BD Propagation 13.6 Implicit Integration 13.6.1 Implicit vs. Explicit Euler 13.6.2 Intrinsic Damping 13.6.3 Computational Time 13.6.4 Resonance Artifacts 13.7 Future Outlook 13.7.1 Integration Ingenuity 13.7.2 Current Challenges 14 Similarity and Diversity 14.1 Introduction to Drug Design 14.1.1 Chemical Libraries 14.1.2 Early Days 14.1.3 Rational Drug Design 14.1.4 Automated Technology 14.1.5 Chapter Overview 14.2 Database Problems 14.2.1 Database Analysis 14.2.2 Similarity and Diversity Sampling 14.2.3 Bioactivity 14.3 General Problem Definitions 14.3.1 The Dataset 14.3.2 The Compound Descriptors 14.3.3 Biological Activity 14.3.4 The Target Function 14.3.5 Scaling Descriptors 14.3.6 The Similarity and Diversity Problem 14.4 Data Compression and Cluster Analysis 14.4.1 PCA compression 14.4.2 SVD compression 14.4.3 PCA and SVD 14.4.4 Projection Application 14.4.5 Example 14.5 Future Perspectives Appendix A Syllabus (Postscript) (PDF) Appendix B Article Reading List Appendix C General Reference List Appendix D Homeworks Bibliography References